Engineering
cytochromes P450
from ancestral
oredictions using
the novel tool
GRASP

Gabe Foley

School of Chemistry and Molecular Biosciences

The University of Queensland
27/06/2019



Graphical representation of ancestral
sequence predictions (GRASP)
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Overview

* What is ancestral sequence reconstruction (ASR) ?

° Why use it? R A CE
ClpVate] o

° ASR on b|g data Graphical representation’of ancestral Sequence: pradlc'.lff_ﬂg-j

* How GRASP enables big data and extends the reach
of ASR



What is ancestral sequence
reconstruction?

e Using the information in modern day biological
sequences to infer what their ancestors looked like
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What is ancestral sequence
reconstruction?

* Using the information in modern day biological
sequences to infer what their ancestors looked like
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* Ancestral sequences can

be ‘resurrected’ —
synthesised and studied
alongside modern day
proteins
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Ancestral seguence reconstruction steps

1. Collect sequences

PPTG
PP-G
PSAG
PSAC
S-TC
5-5G
PRVG
-RTG

PPTG PP-G PSAG PSAC S-TC S-SG PRVG -RTG



Ancestral seguence reconstruction steps
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Ancestral seguence reconstruction steps

3. Infer phylogenetic tree
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Ancestral seguence reconstruction steps

4. Infer ancestors for individual columns
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Ancestral seguence reconstruction steps

4. Infer ancestors for individual columns
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Ancestral seguence reconstruction steps

4. Infer ancestors for individual columns
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Ancestral seguence reconstruction steps
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Ancestral seguence reconstruction steps

5. Concatenate predictions into a complete sequence
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Ancestral seguence reconstruction steps

Joint reconstruction

PSTG

Infer predictions for all ancestors
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Ancestral seguence reconstruction steps

Marginal reconstruction
Center prediction around a specific ancestor
Each position has a probability distribution
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Why use ancestral sequence
reconstruction?

PSAG

Studying evolutionary histories

Determining important functional residues

PPAG PSAG SSTG PRTG

Engineering ancestors from templates

PPTG PPAG PSAG PSAC SSTC SSSG PRVG PRTG
A reconstructed history of character states

Constructing novel sequences



Why use ancestral sequence
reconstruction?

Studying evolutionary histories ~
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Determining important functional residues @ L Anct
Engineering ancestors from templates b ! ?

) Adapted from Hochberg & Thornton, Annu Rev
Constructlng novel sequences Biophys 46, 247-269 (2017)




Why use ancestral sequence
reconstruction?

Studying evolutionary histories

-9~ CYP3A4

- CYP3A5
CYP3A27

=¥ CYP3A37
CYP3_N1

Determining important functional residues

Residual folded protein
(% untreated P450)

Engineering ancestors from templates 01

25 35 45 55 65 75 85
Temperature (°C)

) Adapted from Gumulya et al., Nature Catalysis
Constructlng novel sequences 1, 878 (2018).



Why use ancestral sequence
reconstruction?

Studying evolutionary histories

Determining important functional residues

Engineering ancestors from templates

Successfully reconstructed CYP2U1 variants

Constructing novel sequences



ASR in the era of big data

* Better coverage increases robustness of predictions
* Enables us to classify allowable variation

* Incorporation of distant homologs can allow us to
infer further back in evolutionary time

e Ancestral data sets become rich sources of
information which can be mined and studied



Large data sets approach a canonical form of
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* Increasing sequence count
mean predictions
approach canonical forms

* Ancestors closer to extants
are less affected



Large data sets approach a canonical form of
ancestor

< 1 extant sequence

72 10 oxton seauences Fractional distances between different ancestors
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CPY2U1: 165 sequences O O
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ASR — challenges with big data

* Processing large data sets takes a long time or is
impossible
e Current tools, FastML and PAML capable of ~500 - 600 sequences

* Increased presence of insertions and deletions

* Increases alignment length and must be dealt with in order to
predict sensible ancestors

* Extracting information is a much harder tasker
 More alternatives exist, scale of data is harder to examine



GRASP - solutions for big data

* Processing large data sets takes a long time or is
impossible
* GRASP is capable of inferring data set sizes of ~9000

* Increased presence of insertions and deletions

* GRASP uses partial order graphs to discretely model insertion
and deletion events

e Extracting information is a much harder tasker

 GRASP is an interactive tool built for exploration, with
annotations, mutant suggestions, and motif searching



Processing large data sets

* Data structure is a Bayesian
network and we use
variable elimination for
efficient inference

* Inference algorithm is
equivalent to FastML or
PAML

INFERENCE STEPS
1. Calculate all possible state
2. Calculate a consensus path

* |Importantly, we can
dynamically process these
on demand

Ancestor / /

A / N
NI
~
-
~
-
~
| - - - - - _ _ _ _
359 sequences
Run time (full output) Run time (selected output)
GRASP 3 min 1 min 30 seconds
FastML 8 hours Not possible
PAML 13 hours Not possible

1529 sequences

Run time (full output) Run time (selected output)
GRASP 1 hour 5 mins 9 min

9112 sequences

GRASP ~ 7 days ~ 1 day



Modelling indels with partial
order graphs

R - -

* Represents ambiguity

e Summarises indel events
as edges on a graph

llllllllllllllllllllllllll

lllll
e,
ey



Inferring a consensus path

e Parsimony is used to score each
out edge and each in edge

e Edges that are parsimonious in
both directions are preferred

Ancestor with alternative pathways

|
— @

Ancestor with consensus path
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GRASP annotations and searching

No

e Taxonomic annotation from
UniProt / NCBI

Kingdom: Metazoa(23)

Phylum: Chordata(23)

Family: Lepi idae(1) idae(1) idae(1) i

Genus: Lepisosteus(1) Scleropages(1) Astyanax(1) Clupea(1) Cyprinus() ...

Species: Lepisosteus oculatus(1) Scleropages formosus(1) Astyanax mexicanus(1) Clupea harengus(1) Cyprinus carpio(?) ...

Famiy

- e Searching ancestors for -
* Annotations

S * Sequence motifs

Close

Search for terms (use wildcard *) Find motif %HGE% Find similar nodes in another reconstructed tree

Input a reconstruction label... |Choose a node label... Choose how many (num)
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SeqScrub for curation

Annotates

Cleans

Checks for obsolete sequences

Checks for given characters

Communicates with NCBI / UniProt Foley, Siitzl, D'Cunha, Gillam, Bodén, BioTechniques
(2019) d0i:10.2144/btn-2018-0188

Completely in-browser application



GRASP enables inspection of indel
histories




GRASP enables inspection of indel
histories
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GRASP enables inspection of indel
histories
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GRASP enables inspection of indel

histories

Mammals
Node N4:
Mammalian NO:
ancestor
N4:
Node NO:
Ultimate
ancestor
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Conclusion

* Ancestral sequence reconstruction is a valuable
resource to understand, explore, and utilise evolution

 Large data sets allow us to extend the reach of ASR

* GRASP enables novel experiments on previously
unobtainable data set sizes
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Additional slides



Constructing novel indel variants

From this tree we reconstructed
10 CYP2U1 ancestors, including NO
six ancestors that either
reverted or pre-empted

insertions and deletions.

All ancestors were able to
express and show a
characteristic P450 spectrum. e

CYP2U1 / CYP2R1 / CYP2D tree

Experimental work performed by Connie Ross



Marginal & joint differences

Joint reconstruction of node n4 and node n5
Find the highest probability
P(nd=A,n5=A)=0.4

Character at n5 is assigned A

vy Marginal reconstruction of node n5
Sum up all the ways we could get n5=A
P(n4 =A, n5=A) +P(n4=C, n5=A)

=0.4+0.05

=0.45

Sum up all the ways we could get n5=C
P(n4=A,n5=A)=04 P(n4=A, n5=C)+P(nd=C,n5=C)
P(n4=A, n5=C) =0.3 =0.3+0.25
P(n4 =C,n5= A) =0.05 =0.55
P(n4=C,n5=C)=0.25

Character at n5 is assighed C
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Marginal & joint differences

Posterior probability distributions from the CYP2U1 CYP2R1 Realigned marginal reconstruction at positions where
the marginal and joint reconstructions differ
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