

Engineering cytochromes P450 from ancestral predictions using the novel tool GRASP

Gabe Foley

School of Chemistry and Molecular Biosciences

The University of Queensland

27/06/2019

Graphical representation of ancestral sequence predictions (GRASP)

- Ancestral sequence reconstruction (ASR) tool designed for large data sets
- Successful reconstruction of cytochromes P450 in collaboration with Liz Gillam at UQ

Overview

- What is ancestral sequence reconstruction (ASR) ?
- Why use it?
- ASR on big data

 How GRASP enables big data and extends the reach of ASR

• Using the information in modern day biological sequences to infer what their ancestors looked like

• Using the information in modern day biological sequences to infer what their ancestors looked like

• Using the information in modern day biological sequences to infer what their ancestors looked like

 Ancestral sequences can be 'resurrected' – synthesised and studied alongside modern day proteins

1. Collect sequences

2. Align sequences

3. Infer phylogenetic tree

PPTG STC ^PSAG PPG ^PSAC SSG PRVG RTG PPTG PP-G PSAG PSAC S-TC S-SG PRVG -RTG

5. Concatenate predictions into a complete sequence

PPTG
CTC PSAG
PSAC Sco
Pro - JSG
PRVONG

PPTG PP-G PSAG PSAC S-TC S-TC S-SG PRVG -RTG

Joint reconstruction

Infer predictions for all ancestors

Marginal reconstruction

Center prediction around a specific ancestor Each position has a probability distribution

- Studying evolutionary histories
- Determining important functional residues
- Engineering ancestors from templates
- Constructing novel sequences

- Studying evolutionary histories
- Determining important functional residues
- Engineering ancestors from templates
- Constructing novel sequences

Adapted from Hochberg & Thornton, *Annu Rev Biophys* **46**, 247–269 (2017)

- Studying evolutionary histories
- Determining important functional residues
- Engineering ancestors from templates
- Constructing novel sequences

Adapted from Gumulya et al., *Nature Catalysis* **1**, 878 (2018).

- Studying evolutionary histories
- Determining important functional residues
- Engineering ancestors from templates
- Constructing novel sequences

Successfully reconstructed CYP2U1 variants

ASR in the era of big data

- Better coverage increases robustness of predictions
 - Enables us to classify allowable variation
- Incorporation of distant homologs can allow us to infer further back in evolutionary time
- Ancestral data sets become rich sources of information which can be mined and studied

Large data sets approach a canonical form of ancestor

585 sequences

Dihydroxy-acid dehydratase data set Fractional distances between different ancestors

- Increasing sequence count mean predictions approach canonical forms
- Ancestors closer to extants are less affected

Large data sets approach a canonical form of ancestor

CYP2U1 / CYP2R1 / CYP2D data set Fractional distances between different ancestors

extant sequence

94 extant sequences

0.622699

tant sequences

CYP2U1 / CYP2R1 : 359 sequences

extant sequences

extant sequences

33 extant sequences

- Increasing sequence count mean predictions approach canonical forms
- Ancestors closer to extants are less affected

CYP2U1 / CYP2R1 / CYP2D: 595 sequences

ASR – challenges with big data

- Processing large data sets takes a long time or is impossible
 - Current tools, FastML and PAML capable of ~500 600 sequences
- Increased presence of insertions and deletions
 - Increases alignment length and must be dealt with in order to predict sensible ancestors
- Extracting information is a much harder tasker
 - More alternatives exist, scale of data is harder to examine

GRASP – solutions for big data

- Processing large data sets takes a long time or is impossible
 - GRASP is capable of inferring data set sizes of ~9000

- Increased presence of insertions and deletions
 - GRASP uses partial order graphs to discretely model insertion and deletion events
- Extracting information is a much harder tasker
 - GRASP is an interactive tool built for exploration, with annotations, mutant suggestions, and motif searching

Processing large data sets

- Data structure is a Bayesian network and we use variable elimination for efficient inference
- Inference algorithm is equivalent to FastML or PAML

INFERENCE STEPS

- 1. Calculate all possible state
- 2. Calculate a consensus path
- Importantly, we can dynamically process these on demand

359 sequences

Tool	Run time (full output)	Run time (selected output)
GRASP	3 min	1 min 30 seconds
FastML	8 hours	Not possible
PAML	13 hours	Not possible

1529 sequences

Tool	Run time (full output)	Run time (selected output)
GRASP	1 hour 5 mins	9 min

9112 sequences

Tool	Run time (full output)	Run time (selected output)
GRASP	~ 7 days	~ 1 day

Modelling indels with partial order graphs

- Represents ambiguity
- Summarises indel events as edges on a graph

GR--P G-AS-G-ASP G-ASP

Inferring a consensus path

- Parsimony is used to score each out edge *and* each in edge
- Edges that are parsimonious in both directions are preferred

Ancestor with alternative pathways

GRASP annotations and searching

Levice Printing and service/units No	×
NO Super Kingdom: Existanyota(23) (https://www.constant23) Privlim: Choradat23) Family: Laplacatelidae(1) Otaroglossidae(1) Characidae(1) Cyprinidae(3) Family: Laplacatelidae(1) Scienopages(1) Actyanax(1) Cyprinus(2) Spacies: Laplacateus oculatus(1) Scienopages formosus(1) Actyanax mexicanus(1) Clupea harengus(1) Cyprinus carpio(2)	
a Family	
and and a state of the state of	
20 16 16 10 10 10 10 10 10 10 10 10 10	
Sporting Sport Sport Sp	
	Close

- Taxonomic annotation from UniProt / NCBI
- Searching ancestors for -
 - Annotations
 - Sequence motifs

SeqScrub for curation

- Annotates
- Cleans
- Checks for obsolete sequences
- Checks for given characters

- Communicates with NCBI / UniProt
- Completely in-browser application

Foley, Sützl, D'Cunha, Gillam, Bodén, *BioTechniques* (2019) doi:<u>10.2144/btn-2018-0188</u>

0.2

Actinopterygii (ray-finned fish)

Conclusion

- Ancestral sequence reconstruction is a valuable resource to understand, explore, and utilise evolution
- Large data sets allow us to extend the reach of ASR
- GRASP enables novel experiments on previously unobtainable data set sizes

Acknowledgements

PhD supervisors

Elizabeth Gillam Mikael Bodén Ross Barnard

http://grasp.scmb.uq.edu.au

The Gillam and Bodén groups

Groups of Volker Sieber and Dietmar Haltrich

Connie Ross, Ariane Mora, Marnie Lamprecht, Raine Thomson, Yosephine Gumulya, Kurt Harris, Stephlina D'Cunha

Additional slides

Constructing novel indel variants

From this tree we **reconstructed 10 CYP2U1 ancestors**, including **six ancestors** that either reverted or pre-empted insertions and deletions.

All ancestors were able to express and show a characteristic P450 spectrum.

CYP2U1 / CYP2R1 / CYP2D tree

Experimental work performed by Connie Ross

Marginal & joint differences

Joint reconstruction of node n4 and node n5 Find the highest probability P(n4 = A, n5 = A) = 0.4

Character at n5 is assigned A

Marginal reconstruction of node n5 Sum up all the ways we could get n5=A P(n4 = A, n5 = A) + P(n4= C, n5 = A)= 0.4 + 0.05 = 0.45

Sum up all the ways we could get n5=C

P(n4 = A, n5 = C) + P(n4 = C, n5 = C) = 0.3 + 0.25 = 0.55

Character at n5 is assigned C

Marginal & joint differences

Posterior probability distributions from the CYP2U1 CYP2R1 Realigned marginal reconstruction at positions where the marginal and joint reconstructions differ

N194 ID: 73

G S

0.8

0.6

0.4

0.2

А

N194 ID: 26

1.0

Т

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

N194 ID: 363

PSTV

0.6

0.4

0.2

AIL

Amino acid inferred in marginal reconstruction

Amino acid inferred in joint reconstruction

